Marc Alcon Melia — Jaume I University

THE CREATION OF A NEURAL

NETWORK IN PYTHON THAT

IDENTIFIES HANDWRITTEN DIGITS

Michael Nielsen’s book, chapter 1 adaptation

4 A6 a0

INDEX

Introduction

Perceptrons, what are they?

Sigmoid neurons, what are they?

The architecture of neural networks

Generation of a simple neural network

Learning with gradient descent

|mplementing the neural net in Python to classify digits

Epilogue: Towards “deep learning”

10

13

17

24

32

Marc Alcon Melia — Jaume I University

INTRODUCTION

The vision system of the human eye is one of the great wonders of
the world. Let's consider the following sequence of digits:

The vast majority of people are able to recognize these digits as
504192, which may seem trivial to us, but technically it is not so simple.
In each hemisphere of our brains, we have a primary visual cortex with
140 million neurons, which in turn have tens of trillions of connections
between them. We have a supercomputer in our heads, which has been
modified and improved over hundreds of millions of years, and has
adapted to the visual world.

That is why people are very good at giving meaning to what our
eyes usually show us, and almost all the work is done unconsciously,
which is why we do not really appreciate how complicated the problems
our visual system solves are.

This difficulty becomes apparent when trying to write a program
that recognizes handwritten digits. What seemed simple to us suddenly
becomes extremely complicated, since simple intuitions like "a 9 has a
circle on top and a vertical stick below" are not so "simple’ to express
within an algorithm. When trying to make such rules precise, exceptions
and things to consider start to arise, making the task practically
hopeless.

On the other hand, neural networks approach the problem from a

different perspective. The idea behind these neural networks is to take a
large number of handwritten digits (known as training examples) and
develop a system that can learn from these training examples.
In other words, neural networks use the examples provided to them to
deduce rules for recognizing these digits. Furthermore, if the amount of
training examples is increased, the network can learn more about
handwriting and therefore increase its percentage of accuracy.

The goal of this work is to write a Python program that
implements a neural network that learns to recognize handwritten
digits. It is not a very complex or lengthy program, but it ends up having
a deduction rate of 96% (which could be increased to 99% with future
improvements, although these will not be considered due to the amount
of work and effort required for the relatively small gain).

These types of neural networks are already being used today in the
world, such as in banks for processing checks and in post offices for
recognizing postal addresses.

Marc Alcon Melia — Jaume I University

The reason for deciding to do it on handwritten digits instead of
digital numbers is that it poses more of a challenge than digital
numbers, but at the same time it is not extremely difficult to perform.

In fact, this application is a good way to develop more advanced
learning techniques, such as deep learning, which will be discussed
later.

To make this work explanation document not so short and limited,
the most important key ideas that have been taken into consideration
during the project will be developed, in addition to including an
explanation of two important types of artificial neurons (perceptrons
and sigmoid neurons), and about the stochastic gradient descent
model.

That is why the document will be longer than expected, but in exchange,
the reader will be able to understand at the end of the work what deep
learning really is and why it is so important.

Marc Alcon Melia — Jaume I University

PERCEPTRONS, WHAT ARE THEY?

What is a neural network? To begin with, we will explain what an
artificial neuron called a perceptron is, which was created by Frank
Rosenblatt between 1950 and 1960. Nowadays, it is more common to use
other types of artificial neurons, such as the sigmoid neuron, which we
will explain later. However, in order to understand them, we must first
understand perceptrons.

So, how do perceptrons work? A perceptron takes different inputs (xI1,
X2, ..) and produces a simple output:

I3 ! :| » outpul

Rosenblatt proposed a simple rule for calculating the output of
perceptrons, using weights which are real numbers that express the
importance of the inputs in the total output. The output of the neuron
(0 or 1) is determined by the total sum of the weights, which is then
compared to a certain value (threshold) to see if it is greater or less
than that threshold. Expressed in algebraic terms:

0 if Ej. wiz; = threshold
output =)
P 1 if Ej. wjE; = threshold

And that's all the complexity of how perceptrons work.

Lets see an example to understand it more clearly. Imagine that a
friend invites you to spend a weekend in the countryside, and you have
to take into account several factors.

1-. Will the weather be good?
2-. Will more people come or will it just be you and your friend?
3-. Is it possible to get to the village by public transportation?

Marc Alcon Melia — Jaume I University

We can represent these values by x1, x2, and x3. For example, x1 =1
if the weather will be good, or x1 =0 if it will be bad. Similarly, x2 =1 if you
are going with more friends, or x2 = 0 if you are going alone. And
likewise for x3 if there is public transportation available or not.

Now imagine that you know that in your friend's town you always

have a good time even if not many of your friends are there, but bad
weather ruins the plan completely because you wouldn't be able to do
anything. This is when you can use perceptrons to make a decision.
For this, we could set the weight w1 = 6 for good weather, and w2 =2 and
w3 = 2. This means that the weather condition is very important for this
plan, but going with more friends or the possibility of public
transportation doesn't represent as much importance.

Finally, imagine that you choose the number S as the threshold. This will
result in everything depending on the weather condition in this case. If
x1 =1, the plan will always go ahead, and if x1 = 0, the plan will not go
ahead.

Apart from this result, we can also vary the weights and the
threshold to achieve different results and ways of making decisions. For
example, setting the threshold to 3, then if your friends are going and
there is public transportation (x2 = 1 and x3 = 1), the plan will go ahead
even if the weather is bad, which will generate another way of making
decisions.

Likewise, the lower the threshold, the more you will want the plan to go
ahead.

However, obviously perceptrons are not a complete model of
human thinking and decision-making, but the example illustrates how a
perceptron can give more or less weight to different values to make
decisions, and therefore it can be inferred that a more complex
perceptron network can lead to quite good and decent decisions.

inputs » onutput

Marc Alcon Melia — Jaume I University

In this network that we can observe here, the first column of

perceptrons (the first layer) makes three simple decisions giving weight
to the different inputs, but what do the perceptrons in the second
column do?
Well, each of these perceptrons makes a decision based on the decision
made in the previous layer, resulting in the ability to make decisions at a
more complex and abstract level than the perceptrons in the first layer,
and so on, the more layers, the more complexity and sophistication.

It has been mentioned before that perceptrons have a single
output and in this network, there are different outputs per perceptron,
but they are all the same output, it's just that for visual understanding,
the output of one is used as input in several other perceptrons, it's
clearer than drawing a single line that is then divided into several.

Lets simplify now the way we describe perceptrons, the way to
calculate the output explained above:

0 if E_f w;r; < threshold
output =]
P 1 if E_f Wi > threshold

This summation can be modified and expressed as a dot product
of w and x.

Furthermore, the threshold can be moved to the other side of the
greater-than/less-than sign, becoming the perceptron’s bias, resulting
in the formula:

0 fw-z4+5b6<10
output =)
1l fw-z4+b>=>0

This bias can be taken as how easy it is for a perceptron to output
1, for example, for a perceptron with a very high bias, it is very easy to
output 1, but if the bias is very negative, then outputting 1 is really
difficult.
This introduction of biases is only a small change in perceptrons, but
we will see how it affects in the future (from now on, bias will always be
used instead of threshold).

Marc Alcon Melia — Jaume I University

SIGMOID NEURONS, WHAT ARE THEY?

Let's imagine that we have a perceptron network that we want to
use to solve a certain problem. For example, the inputs of the network
can be the pixel data of a scanned image of a handwritten digit, and we
want the network to learn with the weights and biases so that the
output is the correct classification of that same handwritten digit.

So, what were looking for is to make small changes in the weights to
generate a small corresponding change in the output of the network,
which will make learning of the network possible.

small change in any weight (or bias)

causes a small change in the output

» output+Aoutput

'L\H_j'

The problem is that this ability to produce small changes in the
output by making small changes in the weights is not what happens
with a network containing perceptrons. In this network, making such
small changes would cause the output to change completely from 0 to 1
(the only values that the output can take with perceptrons).

The way we can solve this problem is by introducing a new type of
neuron, sigmoid neurons. These neurons are similar to perceptrons, but
modified so that they can undergo small changes in their weights and
biases, and thus only produce small changes in the output. This is the
crucial factor that will enable them to learn.

Io { | » output

Marc Alcon Melia — Jaume I University

Sigmoid neurons can be represented similarly to perceptrons, as
they take multiple inputs (x1, x2, ..) and produce o single output.
However, in this case, the inputs can be ANY value between 0 and 1, not
just 0 and 1 (for example, 0.638 would be a valid input).

Additionally, like perceptrons, sigmoid neurons have a weight for
each input (w1, w2, ...) and a total bias b, and the output they produce is
not 0 or 1, but o(w-x+b), where o is what we call the sigmoid function,
defined as:

1

alz) =
(2) Y

And the total output of a sigmoid neuron with inputs x1, x2, ...,
weights wl, w2, ..., and bias b is:

1
1 + expl EJ: W b)

At first glance, it may seem that sigmoid neurons are very
different from perceptrons, and that their algebraic formula is opaque
and difficult to understand if you are not familiar with it. However, the
truth is that there are countless similarities between perceptrons and
sigmoid neurons, and that the algebraic formula of sigmoid neurons is
more of a technical detail than a barrier to understanding.

In truth, the formula for o itself is not so important; what really
matters is the shape of the function it traces:

sigmoid function

Marc Alcon Melia — Jaume I University

Which is a "'smoothed" version of the step function:

step function

i —

-4 -3 -2 -1 0 i 2 3 4
Z

In fact, if o were the step function, then the sigmoid neuron
WOULD BE a perceptron, since the output would be 0 or 1 depending
on whether w-x+b is positive or negative.
The result we get when using the current o function is a "'smoothed"
perceptron, and this "smoothness" is the key factor, it is what makes
small changes in the weights of each neuron and in the bias produce
different changes in the output of the neuron.

And how is the output of o sigmoid neuron interpreted?
Obviously, there is a big difference between perceptrons and sigmoid
neurons, and that is that the latter do not just produce a 0 or a 1, and
can produce any real number between 0 and 1 (for example, 0.173,
0.689...), which is the key piece for cases where, for example, the average
intensity of the pixels of an image introduced as a parameter in a
neural network needs to be represented.

Marc Alcon Melia — Jaume I University

THE ARCHITECTURE OF NEURAL
NETWORKS

In this section, we will explain, describe, and showcase a neural
network that is responsible for classifying hand-written numbers. But
before that, let's first clarify some terminology used in neural networks.
Let's imagine we have this network:

)—» nlltFHH

{ . i-. |
./ M_J
The neurons on the left, which receive the input, are called input
neurons, and the neuron on the right, which produces the output, is
called the output neuron. The intermediate layers are called hidden
neurons and are neither input nor output neurons.
In this case, the network above only has one hidden layer, but the

complexity of the neural network depends on what is required, for
example, this one below has two hidden layers:

hidden layors

-
= "-\.. .__.-"
..-'. Ry ;

L 4
'I"\.
A

'
e

mput layver |

10

Marc Alcon Melia — Jaume I University

The way input and output neurons are designed is very simple.
Let's imagine that we want to determine whether a certain image shows
a handwritten "9". To do this, the way the neural network will be
programmed is to encode the pixel intensities in each of the input
neurons.
In this way, if the image is 64x64 pixels in size, then there will be 4,096
input neurons (64x64 = 4,096), and each will receive an intensity scaled
approximately between 0 and 1 (thanks to being sigmoid neurons).
Similarly, the output neuron will be a simple neuron that, if its value is
above 0.5, then the input image will be a "9", while if its value is below 0.5,
then the input image is not a "9".

Now that the design of the input and output neurons is clear, let's
move on to talking about the hidden neurons, whose design is a bit
more complex. In fact, it is not possible to decide the behavior of hidden
neurons with certain pre-established rules.

Instead, researchers and experts in neural networks have developed
many heuristic designs for hidden neurons, so that anyone can achieve
the behavior they want in their neural network.
These heuristics can also be used to help determine the exact number
of hidden neurons that should be used in a particular neural network
to avoid hindering the time required to train it.

So far, we have talked about neural networks in which the output
of one neuron is the input of another in the next layer; this type of
neural network is called feedforward networks, and it means that there
are no loops in the network, information and data always move forward,
never backward.

In fact, if there were a loop for some reason, we could find
ourselves in situations where the input of the o (sigmoid) functions
depended on the output, which would be very difficult to make sense of,
so in our case it is better not to allow any loops.

Still, it is important to show the reader that in other types of
artificial models of neural networks, loops are possible and useful, and
they are called recurrent neural networks. The idea behind these
models is to have neurons that produce results for a certain amount of
time and then stop and remain inactive, and in that amount of time they
have been active producing results, they have been activating other
neurons, which also activate for a short period of time, and so on,
creating a wave of neurons turning on and off.

In these cases, loops do not generate any kind of problem, since the
output of a neuron only aoffects its input at a later time, not at the same
instant.

1

Marc Alcon Melia — Jaume I University

Recurrent neural networks have been less influential than
feedforward networks, in part because the learning algorithms for
recurrent networks are (so far) less powerful and capable of performing
more complex tasks, but they are still very interesting and much more
similar to the way our brain works than feedforward networks.
Furthermore, it is also possible that recurrent neural networks solve
important problems that cannot be solved with feedforward networks or
can only be solved with great difficulty, but the main objective of this
work is the widely used feedforward networks.

12

Marc Alcon Melia — Jaume I University

GENERATION OF A SIMPLE
NEURAL NETWORK

After defining neural networks, we now return to the topic of
recognizing peoples handwriting, which can be divided into two
sub-problems.

First, we need to be able to divide an image containing multiple digits
into separate images of individual digits. For example, we need to divide

oq/43

into six separate images:

Sod /92

It is clear that this topic, segmenting different digits, is something
that we as humans can easily solve, but it is very difficult for a program
to properly crop an image.

Secondly, once the image has been divided, the program needs to be
able to classify each digit individually. For example, it would be ideal if
our program could see the following image:

and identify it as the number 5.

Let's focus on the second problem, classifying individual numbers,
since the segmentation problem becomes trivial once you have a good
way of classifying individual numbers, due to the many solutions we can
apply to achieve it (such as randomly dividing and deciphering if a digit
is found in the divided areq, thus deciding whether the segmentation
haos been successful or not). So, instead of worrying about
segmentation, let's focus on developing a neural network that can solve
a more complicated problem: individual handwritten digit recognition.

13

Marc Alcon Melid — Jaume I University

To achieve individual digit recognition, we will use a neural
network with three layers:

hidden layver

(n = 15 neurons)

output layver

input layer = - e
4 s

(T84 neurons)

NN
— ‘_-.‘:“ \% — =
{“?"’“’»}3 R Y

SN

The input layer contains neurons encoding the value of the pixels
of the image input at that moment, which in this case would be a 28x28
pixel image, so there would be 784 input neurons (28x28 = 784), each with
a determined value between 0 and 1 based on the grayscale value of
each pixel (0.0 represents white and 1.0 represents black).

The second layer is the hidden layer, and the number of neurons
in this layer is denoted by n, and different values of n can be
experimented with (in the image, for example, it takes the value of n =15).

Finally, the output layer contains 10 neurons, one for each
number from 0 to 9, and depending on which neuron ends up with the
highest result, the corresponding number to that neuron will be the
number the neural network has identified with the input image.

But the reader may ask, why 10 output neurons? If the goal is to
identify the number (0, 1, 2,...,, 9), then 4 output neurons could be used,
treating each neuron as a binary value depending on whether the
output is closerto 0 or 1.

So, why does our network have to use 10 output neurons? Wouldn' this
be inefficient? Well, the justification is empirical: both ways can be
tested and the final result is that the network with 10 output neurons

14

Marc Alcon Melia — Jaume I University
works much better than the one with 4. Is there any heuristic that tells
us in advance why we should use 10 output neurons instead of 47?

To understand this, it will help to think about how the neural

network works from its simplest base, lets say we have 10 output
neurons this time.
So, first, let's focus on the first output neuron, which is responsible for
deciding whether or not the digit is a 0. The way it does this is by
weighing the values that have been passed to it from the hidden layer
of neurons. And what are the neurons in that hidden layer doing? Well,
let's say the first hidden neuron in the hidden layer detects if the image
has a segment like this:

.

To do this, we can give a higher weight to the pixels that intersect with
the black parts of the image, and give lower weights to the other input
pixels.

Similarly, let's say that the second, third, and fourth hidden neurons
detect if the following segments are present:

f

L 4

As you may have deduced, the four images together form a 0.

15

Marc Alcon Melia — Jaume I University

So if these mentioned four hidden neurons produce a positive
result at the same time, we can conclude that the digit in this case is a
0.
Of course, this is not the ONLY proof to conclude that this image
represents a 0; you can write a 0 in many other ways (moving it a little
bit, slightly deforming the number), but it is safe to assume that in this
case the entered number is a 0.

Assuming that the neural network works like this, a plausible
explanation can be given as to why it is better to have 10 output
neurons instead of 4, since if we had 4, the first neuron would be in
charge of deciding which is the most significant bit of the digit, and
there is no easy way to relate its most significant bit to the shape of the
digit.

Now, with all that said, this is all just heuristic; nothing confirms
that a three-layer neural network works the way it has been explained in
this document, with hidden neurons detecting simple shapes and
partial figures of a digit. Perhaps an intelligent learning algorithm can
find a way to assign weights for a neural network with only 4 output
neurons, but heuristically, the explained way to make the neural
network work is quite correct, and a lot of time can be saved by
designing a good architecture for the neural network.

16

Marc Alcon Melia — Jaume I University

LEARNING WITH GRADIENT
DESCENT

Now that we have designed the neural network, how can we make
it recognize digits?

The first thing we are going to need is a certain dataset for the
neural network to learn from, and for this project we will use the MNIST
dataset, which contains tens of thousands of scanned images of
handwritten digits and their correct classification (mnist.pkl.gz).

The name MNIST comes from the fact that it is a dataset provided and
collected by NIST, the National Institute of Standards and Technology of
the United States, here are some sample images:

These are, indeed, the digits that have been shown throughout
the document, and they will be used by our program for training.

This MNIST dataset is divided into two parts, the first containing
60,000 images that will be used to train the neural network, they are
scanned images of digits written by 250 people, both adults and high
school students, and are black and white images of 28 by 28 pixels.

The second part contains 10,000 images that will be used as test images,
and will serve to evaluate how well the neural network has learned to
recognize digits.

To make it more effective, the digits in this second part have been
extracted from another 250 different people than those chosen to
create the training images, which will give us more confidence that our
system can even recognize digits from people whose writing it has not
seen during training.

So now, what we want is an algorithm that allows us to decipher

which weights and biases we need so that the output result of the
neural network is correct for every input data that is entered.

To quantify how well this is going to be achieved, the following cost
function is defined:

17

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Marc Alcon Melia — Jaume I University

Clw,b) = % > lly(z) —al?

Here, w is the collection of all the weights in the network, b is the
collection of all the biases, n is the total number of training data inputs,
a is the vector of output neurons for a given input x (for example, if we
input the digit 5 as x, then a should be equal to (0,0, 0,0, 0, 1, 0, 0, 0, 0)),
and the summation is over all the input data.

We will call C the quadratic cost function, and by inspecting this
formula, we can see that C(w, b) will never be negative because none of
its components in the summation are negative.

In fact, C(w, b) will tend towards 0 when y(x) is approximately equal to the
output a for all input data. This means that the better the weights and
biases are adjusted, the closer to zero this function will be. Conversely,
the larger the value of C, the worse the algorithm will be at identifying
the weights and biases.

That is, the main objective will be to find a set of weights and biases
whose value makes the cost function as close to zero as possible, and
we do this with gradient descent.

But well, this was just out of curiosity on how we introduce
gradient descent into our system. Let's now simplify the function so that
it is easier to understand and there are not so many variables at play.
Okay, let's assume that our goal is to try to reduce a certain function,
C(v) (this can work for any function of as many values as v = vi, v2,..)
(note that w and b have been replaced by v, as we are no longer within
the context of neural networks, but in a broader context).

So, to try to reduce C(v), it might help to imagine a two-variable
function, vl and v2:

18

Marc Alcon Melia — Jaume I University
And the goal we have is, as it may be obvious, to try to get C to the
global minimum of the function.
Well, in this particular example maybe it's very simple, but often C will be
a much more complicated function with many more variables (as is our
case with the neural network), and it wont be as easy to find the
minimum point.

One way to approach this problem could be to use algebra and
calculus to find the minimum analytically. We can calculate derivatives
and try to find the places where C is an extremum, and this can work if,
fortunately, C is a function with few variables, but this is a problem when
C has a very large number of variables, which is the case with neural
networks (as is our case, since the result depends on billions of weights
and biases calculated in an extremely complicated way), this option is
not effective in our case.

Having ruled out calculus, let's think about the problem in a much
more visual way.
Imagine that our function is like a kind of valley between two mountains.
Logically, if you place a ball in that valley, it tends to go towards the
lowest point of the valley, and it will gradually go down it. Can we use
this idea to find the minimum of the function? Let's try it.

We will start by choosing a random point for this (imaginary) ball,
and then simulate as if it were rolling down. To perform this simulation,
we can calculate the derivatives (and perhaps second derivatives) of C,
and these derivatives will tell us what we need to know about the shape
of the valley and, therefore, how our ball should roll to reach the
bottom.

Lets try to see what happens when we move the ball a certain
increment in the direction of vl and another certain increment in the
direction of v2, the formula will change as follows:

oC Avr + oC
-
dvi v

AC =~ ﬂ.'lﬂg

So, lets try to choose two increments that make C decrease (to
make the ball roll downhill in the valley).
To decipher which choice we need to make for this to happen, it will
help us to define the total increment of v as follows Av = (Avl, Av2)"T
where T is the transpose of the operation, which will change row vectors
into column vectors.

19

Marc Alcon Melia — Jaume I University
We will also define the gradient of C as the vector of partial derivatives,
we will define this gradient vector with VvC:

L4 L IT
VO — (8(‘ 8C)
dv, 0ve

Before we continue, I'll define what the symbol V means so that it's
clear. In fact, VC can be defined as a unique mathematical object (the
vector defined in the above formula), but V by itself is like a label that
tells you, "hey, VC is a gradient vector.”

Combining the definitions given so far, AC can be defined as:

AC = VC - Av

And this equation shows why VC is called a gradient vector: VC
relates changes in v to changes in C, which is what we would expect a
gradient to do. But the really interesting thing about this equation is
that it allows us to vary Av to make AC more and more negative.

Specifically, suppose we choose
Av = —nVC

where n is a small positive value (known as the learning rate). Then, the
above equation (AC = VC - Av) can be modified as

AC ~ —qVC -VC = —q||VC|?
And in this way, since |[VC||*2 will always be greater than or equal to
zero, this ensures that AC will always be less than or equal to zero, i.e,, C
will always decrement, never increment if we vary v as defined above,
depending on n.
This is exactly the property we were looking for! This function Av = -nvC
will define the "'motion law" of the ball in our gradient descent algorithm,
so well calculate a value for Av and then move the ball in the direction
of v by that amount:

v—v =v— nvC

20

Marc Alcon Melia — Jaume I University

In this way, we will update the position of the ball using this
function every time, and by doing this continuously, we will be able to
reduce C until (in theory) we reach the global minimum.

And how can we apply gradient descent to learn in a neural
network? Just like in the previous explanation, by varying v, we can
make the ball roll to the bottom of the valley. In the neural network, we
need to make the weights and biases work in the same way to achieve
the minimum of the previously mentioned quadratic cost function.

, aC
Wp — W), = W — 7
: k k Iﬁ-wk
aC
by — b, = by — .

To make all of this work correctly, as mentioned before, we need to
choose a learning rate (n) that is small enough, because if its not, we
could end up with AC values that are greater than 0, which obviously
wouldn't be good.

At the same time, we don't want n to be excessively small, because then
the gradient descent would move very slowly and the algorithm would
act very slowly.

That is, we need to ensure that n works well in the equation and is a
good approximation, but it should not make the algorithm excessively

slow. We will see later how to achieve this.
21

Marc Alcon Melia — Jaume I University
This form of gradient descent that we are going to apply has many
advantages as we have seen throughout the document, but it has a
major drawback: it turns out that computing the second partial
derivatives of C can be very costly.
To see why its very costly, lets consider this; suppose we want to
compute all the partial derivatives,

9%2C [dv iOvy,

If there are a million variables vj, then we need to compute around a
trillion (a million squared) second partial derivatives, which is
computationally very very expensive.

To try to solve this problem, we will apply the so-called stochastic
gradient descent, and thus accelerate the program's learning. The idea
is to estimate the gradient of VC by calculating VCx for a small sample
of randomly selected points, and by taking the average of this small
sample, we can obtain a great estimate of the true gradient VC, having
thus greatly accelerated the gradient descent itself, and therefore the
learning.

Stochastic gradient descent works by selecting a small number of
m randomly selected training inputs, which we will label as X1, X2,..., Xm
and refer to them as a mini-batch, and estimating the total cost
gradient by computing the gradients of randomly selected values from
the mini-batch at each moment.

To connect this with learning in neural networks, suppose wk and
bl define the weights and biases in our neural network, then stochastic
gradient descent works by selecting a small amount (mini-batch) of
training inputs and starting to train with them,

) -]r? (}Cl’j
Wr — W), = W — — E ;
: m “— Owy

7 j
b by = b — — E
S -, ab; ’

Then we take another different mini-batch and train with those values
as well, and so on until there are no training values left unprocessed,
thus completing one training epoch and starting a new and improved
one.

22

Marc Alcon Melia — Jaume I University

Stochastic gradient descent can be thought of as a political poll,
it is much simpler to test and work on a small group of data/people (our
mini-batch) than to apply gradient descent to the entire group of
data/people.

For example, if we have a training dataset of n = 60,000 (like MNIST) and
select a small group of m =10, it means that we will have accelerated the
gradient estimation by a factor of 6,000, which of course will not be 100%
perfect, but it doesn't have to be, we only care about knowing in which
direction C decreases, which means that getting the exact calculation of
the gradient is not important.

In fact, in practice, stochastic gradient descent is widely used and a
very powerful technique for teaching and learning in a neural network.

23

Marc Alcon Melia — Jaume I University

IMPLEMENTING THE NEURAL NET IN
PYTHON TO CLASSIFY DIGITS

Let's now move on to the interesting part, what really concerns us
and the objective of this work, which is to write a program in Python
that learns to recognize handwritten digits using stochastic gradient
descent and the MNIST data.

Firstly, the cornerstone of the program is the Network class, which
will serve to represent the neural network we will be working with, here is
the code for initializing a Network object:

Network(object) :

__init (self, sizes):
self.num layers = len|(sizes)
self.sizes = sizes
gelf.biases = [np.random.randn(y, 1) v sizes[l:]]
self.weights = [np.random.randn(y, x)
X, V zip(sizes[:-1], sizes[l1l:])]

In this code snippet, sizes is a list containing the number of
neurons in each layer of the neural network. For example, let's say we
want to create a Network with 2 neurons in the first layer, 3 neurons in
the second layer, and 1 neuron in the last layer, generating a neural
network of three layers, it would be initialized as follows:

net = Network([2, 3, 1)).

The biases and weights of the Network object are randomly
initialized upon initialization, using the random.randn function from the
Numpy library (which needs to be imported for the project, along with
random) to generate Gaussian distributions with a mean of 0 and a

standard deviation of 1.
This random initialization provides a starting point for our stochastic

gradient descent algorithm, and although there may be other ways to
initialize these biases and weights, this serves our problem well.

It is also worth noting that the Network assumes that the first
layer of neurons is the input layer and omits any biases for those
neurons since biases are only used to calculate the results of future

layers.

24

Marc Alcon Melia — Jaume I University
It is also worth noting that biases and weights are stored in lists of
Numpy matrices, so for example, net.weights[1] is a Numpy matrix that
stores the weights connecting the second and third layer of neurons.

To make it simpler (and not write net.weights[1]), we will denote the
weight matrix as w, where W]_k is the weight that affects the connection

between the kth neuron in the second layer and the jth neuron in the
third layer.

Here, the reader may think that the letter indexing should be reversed,
but using this order means that the activation vector of the third layer
would be:

a' = o(wa + b)

Let's explain this equation: a is the activation vector of the second
layer of neurons, and to obtain a, we multiply a by the weight matrix w
and the bias vector b, and then apply the sigmoid function to the entire
setwa + b.
And with all this in mind, we can now introduce the sigmoid function
into our Python program outside the Network class:

sigmoid(z) :
1.0/(1.0+np.exp(-2))

After this, we need to add the feedforward method to the Network
class, which, given a certain input a of the neural network, calculates
and returns its result, applying the function seen above for o

feedforward(self, a):
b, w zip(self.biases, self.weights):
a = sigmoid(np.dot (w, a)+k)
a

Of course, the main thing we want our neural network to do is
learn, and to do so we will add an SGD method that implements
stochastic gradient descent:

25

Marc Alcon Melia — Jaume I University

5GD(=elf, training data, epochs, mini batch size, eta,

test_data= }:
training data = list(training data)
n = len(training data)

test_data:

test data = list(test data)
n test = len(test data)
3 range (epochs) :

random.shuffle (training data)
mini katcheszs = |
training data[k:k+mini katch size]
k range (0, n, mini batch size)]
mini batch mini_ batches:
self.update mini batch(mini batch, eta)
test_data:
print ("Epoch {} : {} {}".format (j,self.evaluate (test_data),n_test))

print ("Epoch {} complete”.format (j))

Lets first talk about the variables/arguments passed to the
function. training_data is a list of tuples (x, y) that represents the input
training data and expected results, epochs and mini_batch_size are
what they seem, the number of times to train and the size of the groups
to sample, and eta is the learning rate. If test_data (optional argument)
is present, the program will evaluate the neural network after each
training epoch, and print out the partial progress made in each one,
allowing for progress and learning to be recorded, although it slows
down the process a bit.

The code works as follows: in each epoch, the training data is

randomly shuffled and divided into mini-batches of approximately the
same size, providing an easy way to sample the training data.
Then, for each mini-batch, a single gradient descent step is applied
through self.update_mini_batch(mini_batch, eta), which updates the
weights and biases of the neural network according to a single iteration
of the gradient descent, using only the training data in that mini-batch
(the ball starts rolling down the mountain).

This update_mini_batch method is programmed as follows within
our Network:

26

Marc Alcon Melia — Jaume I University

update mini katch(self, mini katch, =ta):

nakla kb = [np.zeros (kb.shape) k self.kbiases]
nakla w = [np.zexros (w.shape) W self.weights]
X, ¥ mini katch:
delta nakla bk, delta nakla w = self.backprop(x, Y)
nakla b = [nk+dnk nk, dnb zip (nakla b, delta nakla b)]
nakla w = [nwi+dnw nw, dnw zip (nakla w, delta nakla w)]
self.weights = [w—ietaf;_:imini_hatch]]*nw
W, 0OW zip (self.weights, nakla w)]
self.kiases = [h—(etaf;_:imini_batch]]*nb
b, nb zip (self.kiases, nakla k)]

Where most of the work and computation is done on the line

delta_nabla_b, delto_nabla_w = self.backprop(x, y), which invokes
something called the backpropagation algorithm, a fast and efficient
way to compute the gradient of the cost function.
Thus, update_mini_batch simply works by computing these gradients
for each training example within the mini_batch, and then updates the
self.weights and self.biases appropriately and in accordance with what
has been computed.

The code for self.backprop will not be developed in this work for
practical reasons, and that is because it would make the document too
lengthy (more than it already is) and the necessary mathematical
calculations and expressions that need to be explained are more
complex, so here is a link to a video (it is not necessary to watch the
previous parts if this work has been understood so far) that explains it
in a very didactic and simple way so that if anyone is interested in its
functioning, they can satisfy that knowledge.

For those who do not want to delve further into the topic, let's assume
that self.backprop behaves as described, and returns the appropriate
gradient for the cost associated with the training example x.

Let's now take a look at the entire program, adding more functions
to those already explained here.
Except for self.backprop, the program is fairly self-explanatory, and all
the important weight and calculation work is done in self.SGD and
self.update_mini_batch, which have already been seen and explained. In
addition, self.backprop makes wuse of two extra functions,
sigmoid_prime, which computes the derivative of the o function, and
self.cost_derivative, which returns the vector of partial derivatives for a
given vector of activations (output_activations).

Now lets test the progrom we have developed, how well does it
recognize handwritten digits?

27

https://www.youtube.com/watch?v=tIeHLnjs5U8&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=5

Marc Alcon Melia — Jaume I University
Well, let's start by loading the MNIST data using a small program,
mnist_loader.py (provided by MNIST to process their data). This can be
done by running the following in the Python shell:

mnist loader
»| training data, wvalidation data, test data = A
mnist loader.load data wrapper|()

After loading the MNIST data, we will use our Network.py file to
create a Network object with 30 hidden neurons by writing the following
in the Python shell:

3 Hetwork
#Fr | net = Hetwork.Network([784, 30, 10])

The 784 refers to each of the pixels in an MNIST image (as
explained earlier in the work, 28x28), and the 10 refers to each of the
output neurons, each representing a digit (0 to 9).

Once our Network object is created, we will apply stochastic gradient
descent to learn from the MNIST data over a period of 30 epochs, with a
mini-batch size of 10 and a learning rate of n = 3.0:

» | met.5GD (training data, 30, 10, 3.0, test data=test data)

This will take some time to execute (dJue to the number of epochs,
if you want to speed up the process, you can reduce the number of
epochs required for learning and also reduce the number of hidden
neurons).

Once our Network is trained, it will have no trouble analyzing and
classifying each digit that is input to it, the slowness only occurs during
the learning process, as is typical in any machine learning algorithm.

While the program is running during its different stages, it can be
observed that in just the first epoch it already has around 9,000 out of
10,000 correct predictions, because that's how good this method is, and
this value increases as the number of training epochs increases:

Epoch O : 9028 / 10000 Epoch 26 : 9458 / 10000
Epoch 1 : 9143 / 10000 Epoch 27 : S4&5 / 10000
Epoch 2 : 9241 / 10000 Epoch 28 : 2450 / 10000
Epoch 3 : 9289 / 10000 Epoch 2% : 9485 / 10000

As a result, our Network achieves a success rate of 95% (it may
vary depending on the execution due to the random initialization of
weights and biases), but it is a very encouraging result for its first
attempt.

Lets now see what happens if we vary the number of hidden
neurons from 30 to 100, executing exactly the same code but in this
case, we will create the Network object like this:

28

Marc Alcon Melia — Jaume I University

» | met = Network.Network([784, 100, 10])
»|net.5GD(training data, 30, 10, 3.0, test_data=test_data)

This will raise the results to around 96-97% (although it starts with
lower values than the previous example, it will achieve greater accuracy
with more hidden neurons).

Achieving these accuracies has not been by chance, and it's
because we have had to do tests with training epochs, mini-batch size,
and the learning rate n, which are known as hyper-parameters of our
Network (to differentiate them from weights and biases, normal
parameters that our neural network learns to give them value).

If these hyper-parameters are poorly chosen, it is not difficult to obtain
bad results, as occurs, for example, if we choose a learning rate of n =
0.001:

» | net = NHetwork.Network([784, 30, 10])
» | met.5GD (training data, 30, 10, 0.001, test data=test data)

It can be seen that the obtained data is much less encouraging:

Epoch 0 : 931 / 10000 Epoch 27 : 2470 / 10000
Epoch 1 : 9&5 / 10000 Epoch 28 : 2520 / 10000
Epoch 2 : 982 / 10000 Epoch 29 @ 2569 / 10000

Even so, some learning is perceived during the stages, suggesting
that by increasing the learning rate to, for example, 0.01, we will obtain
better results, and so on until we reach 3.0, which is the "ideal" learning
rate for our project according to the tests carried out.

This means that, even if we poorly choose the hyper-parameters of our
Network, we have some information that will help us improve them and
reach the correct or most suitable ones for our case.

But although it may seem trivial, debugging a neural network is a
challenge. For example, imagine that with 30 hidden neurons, we are
trying to keep increasing the learning rate, and in this case, we have
reached n =100.0:

> | net = Network.Network([784, 30, 10])
» | met.5GD(training data, 30, 10, 100.0, test data=test data)

Here we will realize that we have gone too far, and the learning
rate has a value that is too high:

29

Marc Alcon Melia — Jaume I University

Epoch 0 : 892 / 10000 Epoch 27 g§az / 10000
Epoch 1 892 / 10000 Epoch 28 : 892 / 10000
Epoch 2 g9z / 10000 Epoch 29 : 892 / 10000

The lesson to learn here is that debugging a neural network is not
easy, and although it may seem like simple programming, there is a
certain art and complexity behind it. If someone wants to obtain good
results in their neural network or any machine learning program, they
have to learn to debug their projects correctly.

As we have seen, our program and neural network obtain fairly
decent results, but what does that mean? Decent compared to what?
It is informative to have a test program (not a neural network) to
compare results and understand if our neural network is really working
correctly or not.
The simplest thing is to have a program that randomly guesses the
number, although that would be a very simple example, it's better than
nothing, but let's go further.

Lets try to see how "dark"” an image is, since for example, a 2 will
always have a little more 'darkness” than a 1, since there will be more
pixels marked in black, which can be checked in these images:

Upon receiving each new image, the program calculates how
‘dark” it is, and then tries to guess and deduce which digit it is by the
average of dark pixels in the image.

This is a very simple procedure, and it is easy to program, so the
entire procedure will not be explained. We will simply add the program
as mnist_average_darkness.py, and we will get a result of 2,225 out of
10,000, that is, an accuracy of 22.25%.

It is not very difficult to achieve accuracies between 20 and S0
percent, or even surpass 50 percent.
Let's try to do this by using one of the most well-known algorithms, the
SVM algorithm or support vector machine (if you are not familiar with
this algorithm, it is not necessary to know the details of it to understand
this application). Instead of applying this algorithm, we will use
scikit-learn, a Python library that provides a library for SVM known as
LIBSVM.
30

Marc Alcon Melia — Jaume I University

If we execute scikit-learn's classifier using default settings, we

obtain an accuracy of 93-94 percent (the code can be found in
mnist_svm.py), which is already a great improvement over our previous
simple program.
In fact, this means that the SVM algorithm is performing almost as well
as neural networks, and changing its parameters can make its
performance reach 98.5% accuracy, which means that this algorithm,
with well-chosen and adapted parameters, only fails one digit out of
every 70, which is very good. But can neural networks do better?

The answer is yes, currently neural networks outperform any
other way of classifying MNIST dataq, including the SVM algorithm, and
the current record is the correct classification of 9979 digits out of
10,000, which reaches a level very equivalent to that of humans, and may
even be arguably better, since some images from MNIST can be difficult
to identify even for humans, such as:

O/ 1152585/ (
A [gl[U gk

And to achieve this accuracy, only some improvements have been
made to the program presented in this exercise, which demonstrates
that a simple learning algorithm and good training data often
outperform a very sophisticated algorithm.

31

Marc Alcon Melia — Jaume I University

EPILOGUE: TOWARDS “DEEP LEARNING"

To conclude this work, let's go back to the interpretation given to
artificial neurons at the beginning, as tools to weigh evidence and data.
Let's imagine we want to determine whether an image shows a human
face or not:

We can approach this problem in the same way we approached
the problem of recognizing handwritten digits, using the pixels of the
image as input data and having the network calculate and output
whether it is indeed "a face" or "No, it is not a face".

Suppose we do this, but without using a learning algorithm, and

use the following heuristic: "Does the image have an eye in the upper
left?" "And in the upper right?" "Is there a nose in the middle?" "Does it
have a mouth in the central lower part of the image and hair in the
central upper part?'...
If the answer to many of these questions is "yes,” or “probably or
partially yes," then the network will conclude that it is a face, and vice
versa, if many answers are "'no," then it will determine that it is not a
human face that the image shows.

Of course, this is a somewhat "naive’ heuristic and suffers from
many deficiencies (the person may be bald and therefore have no hair,
only part of the face may be shown, or the face may be at a certain
angle...), but this heuristic suggests that if we can build neural networks
to respond to each of the above questions, then we can also combine
those neural networks to address the facial detection problem.

Next, | add a possible architecture, with rectangles for each of the sub
neural networks (this is not a realistic approach to the problem, it will
only help us better understand how neural networks work).

32

Marc Alcon Melia — Jaume I University

input layer Iz there an eve in the top left?

(image pixels)

Iz there an eye in the top cightT?

Iz there a nose in the middle? + ¥ Is thizs a face?

Iz there a mouth at the bottom?

Iz there halr on top?

So let's imagine that we enter into the first neural subnetwork, *Is
there an eye in the upper left part?’, which can be broken down into
other questions such as, for example, "Is there an eyebrow?", ‘Are there
eyelashes?’, 'Is there an iris in the center?'.., and although these
questions also depend on different situations and positions, we will
keep the simple sentences instead of “Is there an eyebrow in the upper
left part and is it also above the eyelashes and iris?" to show the
problem more simply.

Now we know that we can divide this neural subnetwork into the
following:

Iz there an eyvebrow?

Iz there an eye in the top left? —_— Are there eyelashes?

Iz there an iris7

33

Marc Alcon Melia — Jaume I University

These questions can also be subdivided many more times into
multiple layers, and the final result will be subnetworks whose question
can be answered with simple individual pixels.
These questions will check, for example, the presence or absence of
simple shapes at certain points in the image, questions that can be
answered with simple neurons connected to the same pixels of the
image.

The final result is networks that divide very complex problems
(such as whether o face appears in the image or not) into very simple
problems that can be answered at the level of individual pixels, and this
simplification occurs through different layers, with the first ones
answering very simple and specific questions about the image and the
latest and most advanced ones that build a hierarchy of more complex
and abstract concepts.

These neural networks with this type of structure with multiple layers
(two or more layers of hidden neurons) are called deep neural networks.

And since 2006, a set of techniques has been developed that allow
learning in deep neural networks, and this learning is based on
stochastic gradient descent and backpropagation, although they also
include other ideas.

These techniques together have allowed much larger ond
deeper-layered networks to be trained (now, neural networks with 5 to 10
hidden layers are normally trained), and it turns out that they work and
learn different problems than simple neural networks that have, for
example, one or two hidden layers.

The reason for this is, of course, the ability of deep neural networks to
build a hierarchy of concepts, and comparing these networks with
simpler networks is like comparing a programming language with the
ability to call functions with a "'naked" programming language without
the ability to make those calls, and abstraction in neural networks
works differently than it does in conventional programming, but it is
equally important in both cases.

34

